Dimagi Deploy Tools Documentation
Release 0.5a

Anton de Winter

July 15, 2012

CONTENTS

1 Dimagi Deploy Tools Modules 3
1.1 DjangoModule e e e e 3
1.2 OSModule e 3
1.3 Packages Module L e e e e e e 3
1.4 Supervisor Module L e e e e e 3
1.5 WebModule e e e e e 3
1.6 UtilsModule e e e 3
2 Introduction 5
2.1 Installation oL e e e e e e e e e e e 5
2.2 USAZE .« ot e e e e e e e e e 5
3 Indices and tables 7
Python Module Index 9

Dimagi Deploy Tools Documentation, Release 0.5a

Relevant Documentation:

Contents:

CONTENTS 1

Dimagi Deploy Tools Documentation, Release 0.5a

2 CONTENTS

CHAPTER
ONE

DIMAGI DEPLOY TOOLS MODULES

Contents:

1.1 Django Module

Django deployment module. Creates necessary folders for housing project source code clones, deploys, submodule
checkouts

1.1.1 Django Module Settings

DJANGO_GIT_REPO_URL = "git://your/repo.git" #django project repo url
DJANGO_STAGING_GIT_BRANCH = "develop"

DJANGO_STAGING_SERVER_NAME = "staging.some_project.com"

DJANGO_PRODUCTION_GIT_BRANCH = "master"

DJANGO_PRODUCTION_SERVER_NAME = "production.some_project.com"

DJANGO_GUNICORN_PORT = 9010’

DJANGO_LOCALSETTINGS_LOCAL_PATH = "localsettings.py" #Path to localsettings on local machine

A dictionary you can use if you want to treat localsettings as a template. # This dict get’s autopopulated with other
useful keys: # * project_root # * www_root - holds the log_dir and code_root # * log_dir # * code_root - where
your django code ends up # * project_media - django media folder (in your code_root by default) ((usually used by
collectstatic)) # * project_static - django static files folder location, also in code_root by default # * virtualenv_root #
* services - path where things like apache.conf and supervisor.conf end up.

DJANGO_LOCALSETTINGS_TEMPLATE_DICT = { } DJANGO_LOCALSETTINGS_REMOTE_DESTINATION
= “some_folder/localsettings.py” #RELATIVE TO THE CODE_ROOT ON REMOTE MACHINE
DJANGO_LOCALSETTINGS_NO_TEMPLATE = True #Set to false if you want to treat localset-

tings.py as a template

modules.django.bootstrap (deploy_level="staging’)
Creates initial folders, clones the git repo. DOES NOT DEPLOY ()

modules.django.clone_repo ()
clone a new copy of the git repository

modules.django.collectstatic()
run collectstatic on remote environment. ASSUMES YOU ALREADY HAVE ALL REQUIRED PACKAGES
AND VIRTUALENYV INSTALLED.

modules.django.deploy (deploy_level="staging’)
deploy code to remote host by checking out the latest via git

Dimagi Deploy Tools Documentation, Release 0.5a

modules.django.setup_dirs ()
create (if necessary) and make writable uploaded media, log, etc. directories

modules.django.start ()
Does nothing in this module

modules.django.stop ()
Does nothing in this module

modules.django.upload_localsettings ()
Uploads your django settings from your local machine to host

1.2 OS Module

OS Level Operations.
Creates required users
Installs base packages
Misc OS level config

This module set env.user to your settings.SUDO_USER, be sure to have that set to a good value in your settings file!

1.2.1 OS MODULE SPECIFIC SETTINGS

OS_PACKAGE_LIST_PATH_REDHAT = "yum_packages.txt" #each package on a new line in this file
OS_PACKAGE_LIST_PATH_UBUNTU = "apt_packages.txt" #each package on a new line in this file

modules.os.bootstrap (deploy_level="staging’)
Installs all packages listed in the OS packages list file(s) specified in settings.

modules.os.deploy (deploy_level="staging’)
Does the same thing as bootstrap. Installs all packages listed in the OS packages list file(s) specified in settings.

modules.os.install_packages ()
Install packages, given a list of package names

modules.os.start ()
Does nothing in this module

modules.os.stop ()
Does nothing in this module

1.3 Packages Module

Deals with pip requirements. (Initial installing, refreshing, etc)

1.3.1 Packages Module Settings

PACKAGES_PIP_REQUIREMENTS_PATH = "pip_requires.txt" #The path to pip_requires file ON THE LOCAL Mach.

modules.packages.bootstrap (deploy_level="staging’)
Performs initial install of virtualenv, then installs listed pip packages specified in settings file

4 Chapter 1. Dimagi Deploy Tools Modules

Dimagi Deploy Tools Documentation, Release 0.5a

modules.packages.deploy (deploy_level="staging’)
Installs all packages listed in the pip packages list file(s) specified in settings.

modules.packages.install_packages ()
Install packages, given a list of package names

modules.packages.setup_virtualenv ()
Initially creates the virtualenv in the correct places (creating directory structures as necessary) on the remote
host. If necessary, installs setup_tools, then pip, then virtualenv (packages)

modules.packages.start ()
Does nothing in this module

modules.packages.stop ()
Does nothing in this module

modules.packages.upload pip_requires ()
Uploads the pip requirements file to the host machine and sets the relevant env variables

1.4 Supervisor Module

Oh, god. Supervisord.

Installs Supervisord on the remote machine. Uses the standard config file produced by the
echo_supervisord_conf command. This standard config is modified to point to your custom supervi-
sord.conf template (that actually has the commands used for stopping/starting/etc a process).

1.4.1 Supervisor Module Settings

SUPERVISOR_TEMPLATE_PATH = "templates/supervisorctl.conf" #PATH ON LOCAL DISK, RELATIVE TO THIS FILI
SUPERVISOR_INIT_TEMPLATE = "templates/supervisor-init" #PATH ON LOCAL DISK, Relative to THIS file.
SUPERVISOR_DICT = {

"gunicorn_port": DJANGO_GUNICORN_PORT,

"gunicorn_workers": 3

}

modules.supervisor.bootstrap (deploy_level="staging’)
Installs supervisor, creates required directories (if they don’t exist). Points supervisord.conf to look in the correct
folder for service info

modules.supervisor.setup_dirs()
create (if necessary) and make writable uploaded media, log, etc. directories

modules.supervisor.upload_sup_template ()
Uploads the supervisor template to the server (while populating the template)

1.5 Web Module

Install/Configure Apache for your static (or other web) file serving needs.

1.4. Supervisor Module 5

Dimagi Deploy Tools Documentation, Release 0.5a

1.5.1 Web Module Settings

WEB_HTTPD = "apache" #apache? or nginx
WEB_CONFIG_TEMPLATE_PATH = "templates/my_apache.conf" #This is the path to the template on the LOCA.

#Params that are provided to the template.
#Note: The following env variables are also inserted
#into this dictionary:
#code_root
#log dir
#project (the project name)
#virtualenv_root
WEB_PARAM DICT = {
"HOST_PORT" : 80 #Primary port for hosting things
}

modules.web.bootstrap (deploy_level="staging’)
Sets up log directories if they don’t exist, uploads the apache conf and reloads apache.

modules.web.deploy ()
Uploads the httpd conf (apache or nginx in future) to the correct place.

modules.web.run_apache_command (command)
Runs the given command on the apache service

modules.web.setup_dirs ()
create (if necessary) and make writable uploaded media, log, etc. directories

modules.web.upload_apache_conf ()
Upload and link Supervisor configuration from the template.

1.6 Utils Module

Utility functions
(e.g. Determining the remote system OS)
You should ALWAYS include this module in your deployment. It contains functions that are used by other modules.

modules.utils.bootstrap (deploy_level="staging’)
Does nothing in this module.

modules.utils.develop (deploy_level="staging’)
Does nothing in this module.

modules.utils.start (deploy_level="staging’)
Does nothing in this module.

modules.utils.stop (deploy_level="staging’)
Does nothing in this module.

modules.utils.try_ import (module_name)
Import and return module_name.

>>> try_import ("csv")
<module ’csv’ from ’"...’>

Unlike the standard try/except approach to optional imports, inspect the stack to avoid catching ImportErrors
raised from within the module. Only return None if module_name itself cannot be imported.

6 Chapter 1. Dimagi Deploy Tools Modules

Dimagi Deploy Tools Documentation, Release 0.5a

>>> try_import ("spam.spam.spam") is None
True

modules.utils.what_os()
Returns a string indicating the Host OS. Currently Only supports ‘redhat’ and ‘ubuntu’

1.6. Utils Module 7

Dimagi Deploy Tools Documentation, Release 0.5a

8 Chapter 1. Dimagi Deploy Tools Modules

CHAPTER
TWO

THE CORE FABRIC FILE

This Fabric file (‘fabfile’) goes through your settings file to determine what modules you’ve included, and allows one
to call the same command on each of these modules.

Calling deploy (), for example, will result in each respective module’s own deploy () method being called.

2.1 Operating Methods

Each module has the following operating methods

* bootstrap - usually only called once during the life of the server. Performs initial installation actions (such
as installing packages, uploading templates, configuring of settings)

* deploy - Called regularly. This action updates the code/software/data that the module acts on. For example: a
deploy call in the django module would result in the latest code being checked out from your git repository and
your settings.py (or localsettings.py) file being updated.

e stop - Usually used only by service type modules. For example in the web module, this would sfop the httpd
service

e start - Usually used only by service type modules. As above, but would start the httpd service.

2.2 The settings file

A module’s operating methods (bootstrap, deploy, start, stop) are special in that they each take care to initialize the
fabric env object correctly for their module.

The settings.py file for Deploy Tools allows the user to customize how the fabric env object is configured. Each module
has some unique fields that can be specified in the settings file.

For example, in the Django Module the following settings can be configured:

DJANGO_GIT_REPO_URL = "git://your/repo.git" #django project repo url
DJANGO_SUDO_USER = "some_user"

DJANGO_STAGING_GIT_BRANCH = "develop"

DJANGO_STAGING_SERVER_NAME = "staging.some_project.com"
DJANGO_PRODUCTION_GIT_BRANCH = "master"
DJANGO_PRODUCTION_SERVER_NAME = "production.some_project.com"

DJANGO_GUNICORN_PORT = 79010’

(Have a look at the settings.py.example file found in the root of this project for an example deployment setup).

Dimagi Deploy Tools Documentation, Release 0.5a

In addition to providing values for each module’s settings, you also need to specify which modules deploy_tools
should use, by modifying the MODULES field in settings.py:

#Deploy modules we’ll be utilizing in this project
MODULES = ["modules.os",

"modules.web",

"modules.util",

"modules.django",

"modules.packages"]

As with django, it’s possible to author your own modules and plug them into this list.

2.3 Other Usage Examples

2.3.1 Triggering a specific module

Occasionally you may want to perform an operating method on a single module. Doing so is straightforward:
$ fab production deploy:django

This causes the Django module to run it’s deploy operating method for a production-level remote host. Where
deploy is the operating method that we want to run, and django is the module we would like to run it on.

2.3.2 Trigger a module specific action

Sometimes modules have additional extra methods that don’t fit with/fall into the bootstrap/deploy/start/stop paradigm.

Deploy_tools makes it possible to run these specific commands while still utilizing the overall configuration settings
in settings.py:

$ fab production run_command:do_foo,module=django,extral=bar,extra2=bees

This will cause the django module (specified with the module=. .. argto execute do_foo. Additional arguments,
extral and extra 2 in this case, are passed on to the special command (do_ foo) within the module (django).

2.4 Fabfile Methods

fabfile.bootstrap (module=None)
Runs the bootstrap command for each module.

If ‘module’ argument is specified, this command will only be run for that specific module.
Bootstrapping is usually associated with initial setup or the module being called upon for the first time.

fabfile.deploy (module=None)
Runs the deploy command for each module.

If ‘module’ argument is specified, this command will only be run for that specific module.
‘Deployment’ is usually associated with a refreshing/updating of content/data

fabfile.production ()
use production environment on remote host

fabfile.run_command (cmd, module=None, *args, **kwargs)
Calls the given command on a single specified module (specified with the ‘mod’ argument.

10 Chapter 2. The Core Fabric File

Dimagi Deploy Tools Documentation, Release 0.5a

fabfile.start (module=None)
Runs the start command for each module.

If ‘module’ argument is specified, this command will only be run for that specific module.

‘Starting’ is usually associated with services that can be started/stopped. (Useful for restarting services manu-
ally)

fabfile.stop (module=None)
Runs the stop command for each module.

If ‘module’ argument is specified, this command will only be run for that specific module.

‘Stopping’ is usually associated with services that can be started/stopped. (Useful for restarting services manu-
ally)

2.4. Fabfile Methods 11

Dimagi Deploy Tools Documentation, Release 0.5a

12 Chapter 2. The Core Fabric File

CHAPTER
THREE

INTRODUCTION

Deploy Tools is a python package that harnesses Fabric to create a modular deployment system. Deploy Tools has a
collection of modules that all operate in a similar way allow you to perform bulk operations on a variety of different
areas of your infrastructure.

Deploy Tools is intended to be a very simple Chef or Puppet: capable of being quite flexible without the massive
learning curve.

The core elements of Deploy Tools are:
* Modules - Fabric scripts that implement a certain set of functions (see Operating Methods)
* The main fabfile - Initializes the actions to be performed on each module

* your settings.py file - determines how each module behaves on the remote system.

3.1 Installation

There are two options for getting this project set up:
* Add this repo as a submodule to your existing project.
* Install it on your python path.

Henceforth, this document will assume it is a submodule in some larger project.

3.2 Usage

1. Ensure that your setting.py is configured. Look at settings.py.example for... an example.
2. From the command line simply run:

$ fab production bootstrap deploy stop start

There is no next step. Your server should now live and ready for action!

3.2.1 Details:

The command from step 2 will cause deploy_tools to do bootstrap within each module, refresh all respective code
(deploy), stop all services then start all services (a.k.a restart).

» fab is the command that invokes deploy tools. See the Fabric Documentation for more information

13

http://docs.fabfile.org
http://http://docs.fabfile.org

Dimagi Deploy Tools Documentation, Release 0.5a

* production indicates that the remote host is a production level machine (as opposed to staging).

* bootstrap deploy stop start are all the operating methods we would like to perform.

14 Chapter 3. Introduction

CHAPTER
FOUR

* genindex
* modindex

INDICES AND TABLES

15

Dimagi Deploy Tools Documentation, Release 0.5a

16 Chapter 4. Indices and tables

f

fabfile, ??

m

modules.django, ??
modules.os, ??
modules.packages, ??
modules.supervisor, ??
modules.utils, 3
modules.web, ??

PYTHON MODULE INDEX

17

	Dimagi Deploy Tools Modules
	Django Module
	OS Module
	Packages Module
	Supervisor Module
	Web Module
	Utils Module

	Introduction
	Installation
	Usage

	Indices and tables
	Python Module Index

